Adler, N. E., Boyce, T., Chesney, M. A., Cohen, S., Folkman, S., Kahn, R. L., & Leonard, S. (1994). Socioeconomic status and health: The challenge of the gradient. American Psychologist, 49(1), 15–24. http://doi.org/10.1037/0003-066X.49.1.15
Baldinelli, G., & Bonafoni, S. (2015). Analysis of Albedo Influence on Surface Urban Heat Island by Spaceborne Detection and Airborne Thermography. In V. Murino, E. Puppo, D. Sona, M. Cristani, & C. Sansone (Eds.), New Trends in Image Analysis and Processing -- ICIAP 2015 Workshops (pp. 95–102). Springer International Publishing. Retrieved from http://link.springer.com/chapter/10.1007/978-3-319-23222-5_12
Bealey, W. J., McDonald, A. G., Nemitz, E., Donovan, R., Dragosits, U., Duffy, T. R., & Fowler, D. (2007). Estimating the reduction of urban PM10 concentrations by trees within an environmental information system for planners. Journal of Environmental Management, 85(1), 44–58. http://doi.org/10.1016/j.jenvman.2006.07.007
Borden, K. A., & Cutter, S. L. (2008). Spatial patterns of natural hazards mortality in the United States. International Journal of Health Geographics, 7, 64. http://doi.org/10.1186/1476-072X-7-64
Burke, M., Hsiang, S. M., & Miguel, E. (2015). Global non-linear effect of temperature on economic production. Nature, 527(7577), 235–239. http://doi.org/10.1038/nature15725
Calzadilla, A., Rehdanz, K., Betts, R., Falloon, P., Wiltshire, A., & Tol, R. S. J. (2013). Climate change impacts on global agriculture. Climatic Change, 120(1-2), 357–374. http://doi.org/10.1007/s10584-013-0822-4
Cao, X., Onishi, A., Chen, J., & Imura, H. (2010). Quantifying the cool island intensity of urban parks using ASTER and IKONOS data. Landscape and Urban Planning, 96(4), 224–231. http://doi.org/10.1016/j.landurbplan.2010.03.008
Chandler, T. J. (1962). Temperature and Humidity Traverses Across London. Weather, 17(7), 235–242. http://doi.org/10.1002/j.1477-8696.1962.tb05125.x
Chow, W. T. L., & Roth, M. (2006). Temporal dynamics of the urban heat island of Singapore. International Journal of Climatology, 26(15), 2243–2260. http://doi.org/10.1002/joc.1364
Fraley, C., & Raftery, A. E. (2002). Model-Based Clustering, Discriminant Analysis, and Density Estimation. Journal of the American Statistical Association, 97(458), 611–631. http://doi.org/10.1198/016214502760047131
Fraley, C., Raftery, A. E., Murphy, T. B., & Scrucca, L. (2012). mclust Version 4 for R: Normal Mixture Modeling for Model-Based Clustering, Classification, and Density Estimation (Technical Report No. 597). Department of Statistics: University of Washington.
Goldreich, Y. (1985). The Structure of the Ground-Level Heat Island in a Central Business District. Journal of Climate and Applied Meteorology, 24(11), 1237–1244. http://doi.org/10.1175/1520-0450(1985)024<1237:TSOTGL>2.0.CO;2
Graham, J. D., Chang, B.-H., & Evans, J. S. (1992). Poorer Is Riskier. Risk Analysis, 12(3), 333–337. http://doi.org/10.1111/j.1539-6924.1992.tb00684.x
Grothmann, T., & Patt, A. (2005). Adaptive capacity and human cognition: The process of individual adaptation to climate change. Global Environmental Change, 15(3), 199–213. http://doi.org/10.1016/j.gloenvcha.2005.01.002
Grover, A., & Singh, R. B. (2015). Analysis of Urban Heat Island (UHI) in Relation to Normalized Difference Vegetation Index (NDVI): A Comparative Study of Delhi and Mumbai. Environments, 2(2), 125–138. http://doi.org/10.3390/environments2020125
Hart, M. A., & Sailor, D. J. (2008). Quantifying the influence of land-use and surface characteristics on spatial variability in the urban heat island. Theoretical and Applied Climatology, 95(3-4), 397–406. http://doi.org/10.1007/s00704-008-0017-5
Henry, J. A., & Dicks, S. E. (1987). Association of urban temperatures with land use and surface materials. Landscape and Urban Planning, 14, 21–29. http://doi.org/10.1016/0169-2046(87)90003-X
Hijmans, R. J. (2015). raster: Geographic Data Analysis and Modeling. Retrieved from http://CRAN.R-project.org/package=raster
Ho, H. C., Knudby, A., Sirovyak, P., Xu, Y., Hodul, M., & Henderson, S. B. (2014). Mapping maximum urban air temperature on hot summer days. Remote Sensing of Environment, 154, 38–45. http://doi.org/10.1016/j.rse.2014.08.012
Howard, L. (1820). The Climate of London: Deduced from Meteorological Observations Made at Different Places in the Neighbourhood of the Metropolis. In Two Volumes. W.Phillips.
Huang, G., Zhou, W., & Cadenasso, M. L. (2011). Is everyone hot in the city? Spatial pattern of land surface temperatures, land cover and neighborhood socioeconomic characteristics in Baltimore, MD. Journal of Environmental Management, 92(7), 1753–1759. http://doi.org/10.1016/j.jenvman.2011.02.006
Kotharkar, R., & Surawar, M. (2016). Land Use, Land Cover, and Population Density Impact on the Formation of Canopy Urban Heat Islands through Traverse Survey in the Nagpur Urban Area, India. Journal of Urban Planning and Development, 142(1), 04015003. http://doi.org/10.1061/(ASCE)UP.1943-5444.0000277
Lee, L., Chen, L., Wang, X., & Zhao, J. (2011). Use of Landsat TM/ETM+ data to analyze urban heat island and its relationship with land use/cover change. In 2011 International Conference on Remote Sensing, Environment and Transportation Engineering (RSETE) (pp. 922–927). http://doi.org/10.1109/RSETE.2011.5964429
Mallick, J., Rahman, A., & Singh, C. K. (2013). Modeling urban heat islands in heterogeneous land surface and its correlation with impervious surface area by using night-time ASTER satellite data in highly urbanizing city, Delhi-India. Advances in Space Research, 52(4), 639–655. http://doi.org/10.1016/j.asr.2013.04.025
Meehl, G. A., & Tebaldi, C. (2004). More Intense, More Frequent, and Longer Lasting Heat Waves in the 21st Century. Science, 305(5686), 994–997. http://doi.org/10.1126/science.1098704
Metro Data Resource Center. (2015, October 30). Regional Land Information System (RLIS). Retrieved from 2015-10-30
Mote, P. W., & Salathé Jr., E. P. (2010). Future climate in the Pacific Northwest. Climatic Change, 102(1-2), 29–50. http://doi.org/10.1007/s10584-010-9848-z
NOAA. (2014). Daily Temperatures - Extremes and Normals. Retrieved May 28, 2016, from http://www.wrh.noaa.gov/pqr/pdxclimate/pg6.pdf
Nowak, D. J., Hirabayashi, S., Bodine, A., & Hoehn, R. (2013). Modeled PM2.5 removal by trees in ten U.S. cities and associated health effects. Environmental Pollution, 178, 395–402. http://doi.org/10.1016/j.envpol.2013.03.050
Oke, T. R. (1982). The energetic basis of the urban heat island. Quarterly Journal of the Royal Meteorological Society, 108(455), 1–24. http://doi.org/10.1002/qj.49710845502
Poumadère, M., Mays, C., Le Mer, S., & Blong, R. (2005). The 2003 Heat Wave in France: Dangerous Climate Change Here and Now. Risk Analysis, 25(6), 1483–1494. http://doi.org/10.1111/j.1539-6924.2005.00694.x
Rao, M., George, L. A., Rosenstiel, T. N., Shandas, V., & Dinno, A. (2014). Assessing the relationship among urban trees, nitrogen dioxide, and respiratory health. Environmental Pollution, 194, 96–104. http://doi.org/10.1016/j.envpol.2014.07.011
Saaroni, H., Ben-Dor, E., Bitan, A., & Potchter, O. (2000). Spatial distribution and microscale characteristics of the urban heat island in Tel-Aviv, Israel. Landscape and Urban Planning, 48(1–2), 1–18. http://doi.org/10.1016/S0169-2046(99)00075-4
Semenza, J. C., Rubin, C. H., Falter, K. H., Selanikio, J. D., Flanders, W. D., Howe, H. L., & Wilhelm, J. L. (1996). Heat-Related Deaths during the July 1995 Heat Wave in Chicago. New England Journal of Medicine, 335(2), 84–90. http://doi.org/10.1056/NEJM199607113350203
Sexton, K. (1997). Sociodemographic aspects of human susceptibility to toxic chemicals:: Do class and race matter for realistic risk assessment? Environmental Toxicology and Pharmacology, 4(3–4), 261–269. http://doi.org/10.1016/S1382-6689(97)10020-5
Shandas, V., van Diepen, A., Voelkel, J., & Rao, M. (2016). Coproducing Resilience through Understanding Vulnerability. In Building a Climate Resilient Economy and Society – Challenges and Opportunities.
Sobrino, J. A., Oltra-Carrió, R., Sòria, G., Bianchi, R., & Paganini, M. (2012). Impact of spatial resolution and satellite overpass time on evaluation of the surface urban heat island effects. Remote Sensing of Environment, 117, 50–56. http://doi.org/10.1016/j.rse.2011.04.042
Song, B., Park, K., Song, B., & Park, K. (2014). Validation of ASTER Surface Temperature Data with In Situ Measurements to Evaluate Heat Islands in Complex Urban Areas, Validation of ASTER Surface Temperature Data with In Situ Measurements to Evaluate Heat Islands in Complex Urban Areas. Advances in Meteorology, Advances in Meteorology, 2014, 2014, e620410. http://doi.org/10.1155/2014/620410, 10.1155/2014/620410
Sullivan, K. D. (1995). July 1995 Heat Wave (Natural Disaster Survey Report). Silver Spring, Maryland: U.S. Department of Commerce - National Oceanic and Atmospheric Administration. Retrieved from http://www.nws.noaa.gov/os/assessments/pdfs/heat95.pdf
SUPR. (2015). Urban Heat Island Model, Portland, Oregon. Sustaining Urban Places Research Lab.
Takebayashi, H., & Moriyama, M. (2009). Study on the urban heat island mitigation effect achieved by converting to grass-covered parking. Solar Energy, 83(8), 1211–1223. http://doi.org/10.1016/j.solener.2009.01.019
Tol, R. S. J. (2002). Estimates of the Damage Costs of Climate Change. Part 1: Benchmark Estimates. Environmental and Resource Economics, 21(1), 47–73. http://doi.org/10.1023/A:1014500930521
Turner, B. L., Kasperson, R. E., Matson, P. A., McCarthy, J. J., Corell, R. W., Christensen, L., … Schiller, A. (2003). A framework for vulnerability analysis in sustainability science. Proceedings of the National Academy of Sciences, 100(14), 8074–8079. http://doi.org/10.1073/pnas.1231335100
United Nations. (2015). World Urbanization Prospects: The 2014 Revision (No. (ST/ESA/SER.A/366)). Department of Economic and Social Affairs, Population Division. Retrieved from http://esa.un.org/unpd/wup/Publications/Files/WUP2014-Report.pdf
United States Environmental Protection Agency. (2010, June 10). Vocabulary Catalog. Retrieved May 22, 2016, from https://iaspub.epa.gov/sor_internet/registry/termreg/searchandretrieve/glossariesandkeywordlists/search.do?details=&vocabName=Env%20Justice%20Key%20Terms
U.S. Census Bureau. (2014). TIGER/Line Shapefile, 2014, state, Oregon, Current Block Group State-based. Retrieved from http://www2.census.gov/geo/tiger/TIGER2014/BG/tl_2014_41_bg.zip
van Hove, L. W. A., Jacobs, C. M. J., Heusinkveld, B. G., Elbers, J. A., van Driel, B. L., & Holtslag, A. A. M. (2015). Temporal and spatial variability of urban heat island and thermal comfort within the Rotterdam agglomeration. Building and Environment, 83, 91–103. http://doi.org/10.1016/j.buildenv.2014.08.029
Weng, Q., Lu, D., & Schubring, J. (2004). Estimation of land surface temperature–vegetation abundance relationship for urban heat island studies. Remote Sensing of Environment, 89(4), 467–483. http://doi.org/10.1016/j.rse.2003.11.005
Wong, N. H., & Yu, C. (2005). Study of green areas and urban heat island in a tropical city. Habitat International, 29(3), 547–558. http://doi.org/10.1016/j.habitatint.2004.04.008
Yohe, G., & Tol, R. S. J. (2002). Indicators for social and economic coping capacity—moving toward a working definition of adaptive capacity. Global Environmental Change, 12(1), 25–40. http://doi.org/10.1016/S0959-3780(01)00026-7
Yokobori, T., & Ohta, S. (2009). Effect of land cover on air temperatures involved in the development of an intra-urban heat island. Climate Research, 39(1), 61–73. http://doi.org/10.3354/cr00800
Yüksel, A., Akay, A. E., & Gundogan, R. (2008). Using ASTER Imagery in Land Use/cover Classification of Eastern Mediterranean Landscapes According to CORINE Land Cover Project. Sensors, 8(2), 1237–1251. http://doi.org/10.3390/s8021287